חAmIBIA UחIVERSITY OF SCIEПCE AПD TECHחOLOGY

FACULTY OF ENGINEERING

InSTEM

QUALIFICATION: INTRODUCTION TO SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS		
QUALIFICATION CODE: O4STEM	LEVEL: 4	
COURSE CODE: ICH4O2S	COURSE NAME: INTRODUCTION TO CHEMISTRY B	
SESSION: \quad JANUARY 2020	PAPER:	N/A
DURATION: 3 HOURS	MARKS: $\quad 100$	

SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Mr Victor Uzoma
MODERATOR:	Prof Habauka M Kwaambwa

INSTRUCTIONS

1. Answer all questions.
2. Write all the answers in ink.
3. No books, notes, correction fluid (Tippex) or cell phones allowed.
4. Pocket calculators are allowed.
5. You are not allowed to borrow or lend any equipment or stationary.
6. All FINALANSWERS must be rounded off to TWO DECIMAL PLACES unless otherwise stated.
7. Periodic table on page 9.

THIS QUESTION PAPER CONSISTS OF 9 PAGES (Excluding this front page)

Question 1

1.1 Nitrogen(II) oxide reacts with hydrogen according to the equation below:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{~g})
$$

A suggested mechanism for this reaction is:
Step 1: $\mathrm{NO}+\mathrm{H}_{2}$ Ý X fast

Step 2: $\mathrm{X}+\mathrm{NO} \rightarrow \mathrm{Y}+\mathrm{H}_{2} \mathrm{O}$ slow

Step 3: $\mathrm{Y}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$ fast
1.1.1 Identify the rate-determining step.
1.1.2 A student hypothesized that the order of reaction with respect to H_{2} is 2. Evaluate this hypothesis by finding the orders with respect to hydrogen and nitrogen oxide and write the rate expression for this reaction. (show all working)
1.2.1 Determine the orders of reaction with respect the reactants and the overall rate expression for the reaction between 2-bromobutane and aqueous sodium hydroxide using the data in the table below:

Experiment	$[\mathrm{NaOH}] / \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	Rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathbf{s}^{-1}$
1	1.00	1.00	1.66×10^{-3}
2	0.50	1.00	8.31×10^{-4}
3	0.25	0.25	1.02×10^{-4}
4	1.00	0.50	8.29×10^{-4}

1.2.2 Determine the rate constant, k, with its units, using the data from experiment 3.
1.2.3 Identify the molecularity of the rate-determining step in this reaction.

Question 2

2.1 Iron (III) oxide is the main source of iron but the decomposition of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ into its elements is extremely difficult due to a large positive value of ΔG^{\ominus}. Consider the following reactions:

$$
\begin{array}{ll}
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) & \Delta G^{\ominus}=+742 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta G^{\ominus}=-257 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Suggest, with a reason, whether it is possible to produce iron by reacting $\mathrm{Fe}_{2} \mathrm{O}_{3}$ with CO.
2.2 The thermite reaction is one of the most exothermic reactions:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{I})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta H^{\ominus}=-825.2 \mathrm{~kJ}
$$

Species	$s^{\ominus} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$	$\Delta G_{f}{ }^{\text {o }} \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{Al}(\mathrm{s})$	+28.3	0
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	+50.9	-1582
$\mathrm{Fe}(\mathrm{l})$	+34.8	+10.0
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	+87.5	-742

2.2.1 Calculate the standard free energy change, ΔG^{\ominus}, in kJ mol-1, by using values of the standard free energy change of formation, ΔG_{f}, from the table above.
2.2.2 Calculate the standard entropy change, ΔS, in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, by using values of standard entropy, S^{\ominus}, from the table.
2.2.3 Calculate the standard free energy change, ΔG^{\ominus}, for the reaction using ΔH^{\ominus} and ΔS^{\ominus} values at $25^{\circ} \mathrm{C}$.

Question 3

$3.1 \quad 20.0 \mathrm{~cm}^{3}$ aqueous solutions of two bases, each with a concentration of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ were separately titrated with $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, and the following graph was obtained.

3.1.1 Deduce the pH at the equivalence points for base I and base II.
3.1.2 Suggest why the titration curve for base I is different from base II.
3.1.3 State the formulas of two possible bases which could be used as base I.
3.1.4 Calculate, using data from the graph, the dissociation constant, K_{b}, of base II, showing your working.

3.1.5 Table of Common Acid-Base Indicators:

Indicator	pH Range	Acid	Base
Thymol Blue	$1.2-2.8$	red	yellow
Pentamethoxy red	$1.2-2.3$	red-violet	colorless
Methyl red	$4.4-6.2$	red	yellow
Bromcresol purple	$5.2-6.8$	yellow	purple

Suggest an indicator from the table above, that can be used for both titrations.
3.2.1 State what is meant by the term buffer solution.
3.2.2 Calculate the pH of a solution prepared by mixing $40.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{3}(\mathrm{aq})$ and $40.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$, showing your working.
($\mathrm{p} K_{\mathrm{b}} \mathrm{NH} 3=4.75$ at 298 K)
3.3 The equations of two acid-base reactions are given below:

$$
\begin{array}{ll}
\text { Reaction A } & \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \text { Y } \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}(\mathrm{aq}) \\
\text { Reaction B } & \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{Y}_{\mathrm{CO}}^{3} \\
\mathrm{C}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{array}
$$

3.3.1 Explain whether $\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ behaves as an acid or a base in each of the reactions A and B.
3.3.2 Deduce two conjugate acid-base pairs from reactions A and B.
3.4 Nitric acid, HNO_{3}, and nitrous acid, HNO_{2}, are described as strong and weak acids respectively.
3.4.1 Distinguish between strong and weak acids.
3.4.2 A 1.00 g sample of solid magnesium carbonate, MgCO , is added to separate solutions of HNO_{3} and HNO_{2} of the same concentration and temperature. State one similarity and one difference in the observations made in these reactions.
3.4.3 A solution of HNO_{3} has a pH of 1 , while a solution of HNO_{2} has a pH of 5 . Determine the ratio of the hydrogen ion concentration in $\mathrm{HNO}_{3}: \mathrm{HNO}_{2}$.

Question 4

Iodine monobromide, IBr , has a permanent dipole. Alkenes react with IBr in a similar way to the reactions of alkenes with HBr .
4.1 Propene reacts with IBr to make two possible organic products. One of these products is 2-bromo-1-iodopropane.
4.1.1 Using the curly arrow model, complete the mechanism to make 2-bromo-1-iodopropane.
(3)

4.1.2 What is the name of this mechanism?
4.1.3 Draw the structure of the possible organic product of the reaction of propane with IBr .
4.2 Methane reacts with IBr to form many products. Two of these products are lodomethane and hydrogen bromide.
4.2.1 Suggest the essential condition needed for this reaction.
4.2.2 The mechanism of this reaction involves three steps, of which one is called termination. Describe the mechanism of the reaction that forms iodomethane and hydrogen bromide. Your answer must include:

The name of the mechanism
The names of the other two steps of the mechanism
Equations for these two steps of the mechanism
The type of bond fission
One equation for a termination step.

Question 5

The electrons transferred in redox reactions can be used by electrochemical cells to provide energy. Some electrode half-equations and their standard electrode potentials are shown in the table below:

Half-equation	E / V
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}(\mathrm{aq})+6 \mathrm{e} \rightarrow 2 \mathrm{Cr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.33
$\mathrm{Fr}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0.00
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-0.304

5.1 Describe a standard hydrogen electrode.

5.2 A conventional representation of a lithium cell is given below. This cell has an e.m.f. of +2.91 V .

$$
\mathrm{Li}(\mathrm{~s})\left|\mathrm{Li}^{+}(\mathrm{aq})\right|\left|\mathrm{Li}^{+}(\mathrm{aq})\right| \mathrm{MnO}_{2}(\mathrm{~s}), \mathrm{LiMnO}_{2}(\mathrm{~s}) \mid \mathrm{Pt}(\mathrm{~s})
$$

Write a half-equation for the reaction that occurs at the positive electrode of this cell. Calculate the standard electrode potential of this positive electrode, and the change in gibbs free energy for the cell. Is the reaction feasible or not, explain why.

Question 6

6.1 Electrolysis of an aqueous solution of copper(II) sulfate, CuSO_{4}, can be carried out using platinum electrodes.
6.1.1 State an equation for the half-reaction occurring at the positive electrode (anode) and one observation that could be made as a result.
6.1.2 State an equation for the half-reaction occurring at the negative electrode (cathode).
6.1.3 Describe two changes or observations in the electrolyte as result of these half-reactions.
6.1.4 Determine the relative amount, in moles, of products formed at each electrode.
6.1.5 Identify another compound which will form the same products at the positive and negative electrodes.
6.1.6 The same process is carried out using copper electrodes instead of the platinum electrodes. Describe the changes or observations that take place at both the electrodes and in the electrolyte.
6.2 Identify two factors that affect the quantity of copper produced during the electrolysis of an aqueous copper(II) sulfate solution.
6.3 Consider the following half cell reactions and their standard electrode potentials:

$$
\begin{array}{ll}
\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}-\hat{\mathrm{Y} N i}(\mathrm{~s}) & \mathrm{E}^{\ominus}=-0.2 \mathrm{~V} \\
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \mathrm{Y}^{\prime} \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O} \text { (I) } & E^{\ominus}=+1.51 \mathrm{v}
\end{array}
$$

6.3.1 State the conditions needed for the electrode potentials to be described as standard.(1)
6.3.2 Deduce a balanced equation for the overall reaction which will occur spontaneously
when the two half cells are connected.
6.3.3 Identify the reducing agent in the above reaction and determine the change in oxidation number for the oxidizing agent.
6.3.4 Determine the cell potential when the two half cells are connected.
6.3.5 Draw and label a diagram of the voltaic cell from part 6.3. Indicate the anode, cathode, the direction of the electron movement and ion flow.
6.3.6 Outline two differences between an electrolytic cell and a voltaic cell.

Question 7

7.1 Crude oil is a source of many hydrocarbons. The skeletal formulae of some of these hydrocarbons are shown below:

A

D

G

B

E

H

C

F

I
7.1.1 Explain why compound A is both saturated and a hydrocarbon.
7.1.2 What is the empirical formula of compound C?
7.1.3 Give the letters, of two hydrocarbons that are structural isomers of each other.
7.1.4 Explain why hydrocarbon D has a higher boiling point than hydrocarbon C .
7.1.5 Hydrocarbons G and H are stereoisomers of each other. What is meant by the term stereoisomerism?
7.1.6 Construct the equation for the complete combustion of hydrocarbon C .
7.1.7 Compound I does not contain a functional group.
7.1.7.1 What is meant by the term functional group?
7.1.7.2 Give the IUPAC name for the structure.
7.1.7.3 Compound I reacts with chlorine in the presence of ultraviolet radiation to give several structural isomers of $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl}$. How many structural isomers could be formed in this reaction?
7.1.7.4The mechanism of the reaction involves radicals. What is meant by the term radical?
THE END

σ

